Home
Class 12
MATHS
Statement 1: The determinant of a matrix...

Statement 1: The determinant of a matrix `A=([a_(i j)])_(5xx5)w h e r ea_(i j)+a_(j i)=0` for all `ia n dj` is zero. Statement 2: The determinant of a skew-symmetric matrix of odd order is zero

Promotional Banner

Similar Questions

Explore conceptually related problems

Detemine the matrix A = (a_(ij))_(3 xx 2) if a_(ij) = 3i - 2j

Statement 1: The inverse of singular matrix A=([a_(i j)])_(nxxn),w h e r ea_(i j)=0,igeqji sB=([a i j-1])_(nxxn)dot Statement 2: The inverse of singular square matrix does not exist.

Statement 1: If A=([a_(i j)])_(nxxn) is such that ( a )_(i j)=a_(j i),AAi ,ja n dA^2=O , then matrix A null matrix. Statement 2: |A|=0.

If A=(a_(ij))_(2xx2) .Where a_(ij) is given by (i-2j)^(2) then A is:

The matrix A given by (a_(ij))_(2 xx 2) if a_(ij) = i - j is ………. .

If a_(ij)=i^(2)-j and A=(a_(ij))_(2xx2) is:

Construct the matrix A = [ a _(ij)] _(3xx3) , where a_(ij) i- j . State whether A is symmetric or skew-symmetric .

Construct the matrix A = [a_(ij)]_(3xx3), where a_(ij)=i-j . State whether A is symmetric or skew- symmetric.

Let P=[a_("ij")] be a 3xx3 matrix and let Q=[b_("ij")] , where b_("ij")=2^(i+j) a_("ij") for 1 le i, j le 3 . If the determinant of P is 2, then the determinant of the matrix Q is