Home
Class 12
MATHS
Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for a...

`Iff(2-x)=f(2+x)a n df(4-x)=f(4+x)` for all `xa n df(x)` is a function for which `int_0^2f(x)dx=5,t h e nint_0^(50)f(x)dx` is equal to 125 (b) `int_(-4)^(46)f(x)dx` `int_1^(51)f(x)dx` (d) `int_2^(52)f(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a)^(b) f(x) dx =

If f(a+b-x)=f(x) , then int_(a)^(b)xf(x)dx is equal to

If int_(0)^(2a) f (x) dx = 2 int_(0)^(a) f(x) then

If int_(0)^(a) f(x) dx + int_(0)^(a) f(2a-x) dx =

If int f(x)dx=psi(x) , then int x^5f(x^3)dx

If f(x)=f(a+x) then show that int_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx .

If f(x) is an odd function then int_(-a)^(a)f(x)dx is …………. .

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to