Home
Class 12
MATHS
If f(x) is integrable over [1,], then in...

If `f(x)` is integrable over `[1,],` then `int_1^2f(x)dx` is equal to `("lim")_(nvecoo)1/nsum_(r=1)^nf(r/n)` `("lim")_(nvecoo)1/nsum_(r=n+1)^(2n)f(r/n)` `("lim")_(nvecoo)1/nsum_(r=1)^nf((r+n)/n)` `("lim")_(nvecoo)1/nsum_(r=1)^(2n)f(r/n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate ("lim")_(nvecoo)sum_(k=1)^nk/(n^2+k^2)

Show that ("lim")_(nvecoo)(1/(n+1)+1/(n+2)++1/(6n))=log6

Evaluate: ("lim")_(nvecoo)(sumr=1nsqrt(r)sumr=1n1/(sqrt(r)))/(sumr=1n r)

Evaluate: ("lim")_(nvecoo)((a1 1/x+a2 1/x++a n1/x)/n)^(n x)

If sum_(r=1)^n T_r=(3^n-1), then find the sum of sum_(r=1)^n1/(T_r) .

Evaluate: ("lim")_(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/nsec^2 1]

Evaluate the following limit: lim_(nto oo)(sum_(r=1)^(n) sqrt(r)sum_(r=1)^(h)1/(sqrt(r)))/(sum_(r=1)^(n)r)

Discuss the continuity of f(x)=(lim)_(nvecoo)(x^(2n)-1)/(x^(2n)+1)

Discuss the continuity of f(x)=("lim")_(nvecoo)cos^(2n)xdot

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5