Home
Class 12
MATHS
Prove that: int0^(2pi)(xsin^(2n)x)/(...

Prove that: `int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx`= `pi^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

Evaluate int_(0)^((pi)/2)(sin^(n)xdx)/(sin^(n)x+cos^(n)x)

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Prove that int_(0)^(pi/4)(sin2xdx)/(sin^(4)x+cos^4 x)=(pi)/(4)

Evaluate: int_(0)^(pi/2)(dx)/(4sin^(2)x+5cos^(2)x)

Prove that int_(0)^(pi)(xsin^(3)x)/(1+cos^(2)x)dx=pi/2(pi-2)

Evaluate : int_(0)^(pi/2)(sin^(2)x + cos^(4)x)dx

Evaluate int_(0)^(pi/2)(sin^(2)x+cos^(4)x) dx

Evaluate int_(0)^((pi)/(2))(sin^3x)/(sin^3 x+cos^3 x)dx .