Home
Class 12
MATHS
L e tI1=int(pi/6)^(pi/3)(sinx)/x dx ,I2=...

`L e tI_1=int_(pi/6)^(pi/3)(sinx)/x dx ,I_2=int_(pi/6)^(pi/3)(("sin"(sinx))/(sinx))dx ,I_3=int_(pi/6)^(pi/3)(sin(tanx)/(tanx))dx` Then arrange in the decreasing order in which values `I_1,I_2,I_3` lie.

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2)e^(-x) sinx dx is

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .

int_(0)^(pi)(cosx)/(1+sinx)dx=

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

Evaluate pi_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Evaluate: int_(-pi/2)^(2pi)sin^(-1)(sinx)dx

Evaluate int_(0)^(pi/2)(sinx/(cosx+sinx))dx

Find int_((-pi)/(4))^(pi/4)|sinx|dx

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .