Home
Class 12
MATHS
Show that int0^(npi+v)|sinx|dx=2n+1-cosv...

Show that `int_0^(npi+v)|sinx|dx=2n+1-cosv ,` where `n` is a positive integer and ,`0<=vltpi`

Text Solution

Verified by Experts

Let `I=int_(0)^(npi+v)|sinx|dx`
`=int_(0)^(v)|sinx|dx+int_(v)^(npi+v)|sinx|dx`
`=int_(0)^(v)sinx dx+n int_(0)^(pi) |sinx+dx` [ `:'|sinx|` has period `pi`]
`=(-cosx)_(0)^(v)+n(-cosx)_(0)^(pi)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(infty)x^n e^(-x) dx=n!., Where n is a positive integer.

Evaluate: int_(0)^(2pi)x^(2) sinnxdx, where n is positive integer.

Evaluate int_(0)^(infty)(x^(n))/(n^(x)) dx, where n is a positive integer.

Evaluate int_(0)^(pi)x^(2) cosnxdx, where n is positive integer.

Evaluate: int_0^(pi/2)|sinx-cosx|dx

If A=[(3,-4),(1,-1)] , then prove that A^(n)=[(1+2n,-4n),(n,1-2n)] , where n is any positive integer.

int_(0)^(pi)(cosx)/(1+sinx)dx=