Home
Class 12
MATHS
If adj B=A, |P|=|Q|=1, then adj (Q^(-1) ...

If adj `B=A, |P|=|Q|=1`, then adj `(Q^(-1) BP^(-1))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If adj B=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P A Q d. P A^1Q

If A is a square matrix of order less than 4 such that |A-A^(T)| ne 0 and B= adj. (A), then adj. (B^(2)A^(-1) B^(-1) A) is

If A and B are square matrices of order 3 such that det. (A) = -2 and det.(B)= 1 , then det.(A^(-1)adjB^(-1).adj(2A^(-1)) is equal to

Prove that ("adj. "A)^(-1)=("adj. "A^(-1)) .

If adj A = [(2,3),(4,-1)] and adj B = [(1,-2),(-3,1)] then adj (AB) is

If adj A=[[2,1],[3,-1]] , adj B=[[2,3],[-1,2]] then adj (AB) is :

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

A= [(3,5),(1,2)] , B=adj A and C =3A, then (|adj B|)/(|C|) =

Let A be a square matrix of order 3 such that det. (A)=1/3 , then the value of det. ("adj. "A^(-1)) is