Home
Class 12
MATHS
If f is an odd function, then evaluate ...

If `f` is an odd function, then evaluate
`I=int_(-a)^(a)(f(sinx))/(f(cosx)+f(sin^(2)x))dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)/(f(cosx)+f(sin^2x)dx

int_(0)^((pi)/(2))(f(sinx))/(f(cosx)+f(sinx))dx is :

If f(x) is an odd function then int_(-a)^(a)f(x)dx is …………. .

Evaluate int_(0)^(a)(f(x))/(f(x)+f(a-x)) dx.

Evaluate int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

If f(x) is even then int_(-a)^(a)f(x)dx ….

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dxdot

If int_(0)^(a) f(x) dx + int_(0)^(a) f(2a-x) dx =

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is