Home
Class 12
MATHS
Let a+b=4,w h e r ea<2,a n dl e tg(x) be...

Let `a+b=4,w h e r ea<2,a n dl e tg(x)` be a differentiable function. If `(dg)/(dx)>0` for all `x ,` prove that `int_0^ag(x)dx+int_0^bg(x)dxin c r e r a s e sa s(b-a)in c r e r a s e sdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Evaluate int_a^b(dx)/(sqrt(x)),w h e r ea , b > 0.

Prove that int_0^oo[cot^(-1)x]dx ,w h e r e[dot] denotes the greatest integer function.

Prove that int_0^x e^(x t)e^-t^2dt=e^(x^(2)/4)int_0^x e^-(t^(2)/4)dt

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[x] denotes the greatest integer function.

The value of int_0^1e^(x^2-x)dx is (a) 1 (c) > e^(-1/4) (d) none of these

If f(x)=a x^2+b x+c ,g(x)=-a x^2+b x+c ,w h e r ea c!=0, then prove that f(x)g(x)=0 has at least two real roots.

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

Prove that a^4+b^4+c^4> a b c(a+b+c),w h e r ea ,b ,c > 0.