Home
Class 12
MATHS
A=[1t a n x-t a n x1]a n df(x) is define...

`A=[1t a n x-t a n x1]a n df(x)` is defined as `f(x)=d e tdot(A^T A^(-1))` en the value of `(f(f(f(ff(x))))_` is `(ngeq2)` _________.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then find the value of f(7)dot

Let f(x)=int_0^x(dt)/(sqrt(1+t^3))a n dg(x) be the inverse of f(x) . Then the value of 4(g^(primeprime)(x))/((g(x))^2)i s____

Iff(x)=x+int_0^1t(x+t)f(t)dt ,t h e nt h ev a l u eof(23)/2f(0) is equal to _________

Let f: RvecR be a one-one onto differentiable function, such that f(2)=1a n df^(prime)(2)=3. The find the value of ((d/(dx)(f^(-1)(x))))_(x=1)

f(x)=int_1^x(tan^(-1)(t))/t dt , x in R^+, then find the value of f(e^2)-f(1/(e^2))

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)