Home
Class 12
MATHS
If S=[(0,1,1),(1,0,1),(1,1,0)] and A=[(b...

If `S=[(0,1,1),(1,0,1),(1,1,0)]` and `A=[(b+c,c-a,b-a),(c-b,c+a,a-b),(b-c,a-c,a+b)]`
`(a, b, c ne 0)`, then `SAS^(-1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If S=[(0,1,1),(1,0,1),(1,1,0)] and A=[(b+c,c-a,b-a),(c-b,c+b,a-b),(b-c,a-c,a+b)] (a, b, c ne 0) , then SAS^(-1) is

If |{:(a,b,a),(b,c,1),(c,a,1):}|=2010 and if |{:(c-a,c-b,ab),(a-b,a-c,bc),(b-c,b-a,ca):}|-|{:(c-a,c-b,c^(2)),(a-b,a-c,a^(2)),(b-c,b-a,b^(2)):}|=p , then the number of positive divisors of p is

If A=[(1,2,-3),(5,0,2),(1,-1,1)],B=[(3,-1,2),(4,2,5),(2,0,3)] and C=[(4,1,2),(0,3,2),(1,-2,3)] , then compute (A+B) and (B-C) . Also, verify that A+(B-C)=(A+B)-C .

If a ne b, b,c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 , then abc =

Find (1)/(2)(A+A') and (1)/(2)(A-A') , when A=[(0, a, b),(-a,0,c),(-b,-c,0)]

Let A =({:(1,0,1,0),(0,1,0,1),(1,0,0,1):}) , B=({:(0,1,0,1),(1,0,1,0),(1,0,0,1):}) C=({:(1,1,0,1),(0,1,1,0),(1,1,1,1):}) by any three boolean matrices of the same type. Find (i) A vee B , (ii) A wedge B , (iii) (A vee A) wedge C , (iv) (A wedge B) vee C .

Prove that |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=(a-b)(b-c)(c-a)

Prove that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a) .

" if " |{:(1,,1,,1),(a,,b,,c),(bc,,ca,,ab):}|=|{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}| where a,b,c are distinct positive reals then the possible values of abc is // are