Home
Class 12
MATHS
Ifg(x)=int0^x(|sint|+|cost|)dt ,t h e ng...

`Ifg(x)=int_0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2)` is equal to, where `n in N ,` `g(x)+g(pi)` (b) `g(x)+g((npi)/(n2))` `g(x)+g(pi/2)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

Off(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s f(x)+f(pi) (b) f(x)+2(pi) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

If G(x)=-sqrt(25-x^2),t h e n lim_(x->1)(G(x)-G(1))/(x-1)i s (a) 1/(24) (b) 1/5 (c) -sqrt(24) (d) none of these

int_0^x|sint|dt , where x in (2npi,(2n+1)pi) , ninN ,is equal to (A) 4n-cosx (B) 4n-sinx (C) 4 n+1-cosx (D) 4n-1-cosx

If g is the inverse function of fa n df^(prime)(x)=sinx ,t h e ng^(prime)(x) is (a) cos e c{g(x)} (b) "sin"{g(x)} (c) -1/("sin"{g(x)}) (d) none of these

If f(x)=x+tanxa n df is the inverse of g, then g^(prime)(x) equals (a) 1/(1+[g(x)-x]^2) (b) 1/(2-[g(x)-x]^2) (c) 1/(2+[g(x)-x]^2) (d) none of these

If a r g(z)<0, then a r g(-z)-"a r g"(z) equals pi (b) -pi (d) -pi/2 (d) pi/2

If int (Insqrtx)/x dx = g(x)+C where g(1) = 0, then g(e^(6)) is equal to