Home
Class 12
MATHS
If Sn=[1/(1+sqrt(n))+1/(2+sqrt(2n))+.......

If `S_n=[1/(1+sqrt(n))+1/(2+sqrt(2n))+....+1/(n+sqrt(n^2))]` then `(lim)_(n ->oo)S_n` is equal to (A) `log 2` (B) `log4` (C) `log8` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

("lim")_(n->oo)sum_(x=1)^(20)cos^(2n)(x-10) is equal to (a) 0 (b) 1 (c) 19 (d) 20

If y=(log)_(sinx)(tanx),t h e n(((dy)/(dx)))_(pi/4)"is equal to" (a) 4/(log2) (b) -4log2 (c) (-4)/(log2) (d) none of these

("lim")_(xtooo)1/(1+nsin^2n x)is equal (a)-1 (b) 0 (c) 1 (d) oo

Evaluate: ("lim")_(nvecoo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

If 1+x^(2)=sqrt(3)x , then sum_(n=1)^(24)(x^(n)-(1)/(x^n))^(2) is equal to

If U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U_(n+1)=8U_n-4U_(n-1)dot

If S_(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!) , then S_(50)=

lim_(x->oo)[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to (a)0 (b) 1/2 (c) log 2 (d) e^4

Let S= sum_(n=1)^(9999)1/((sqrt(n)+sqrt(n+1))(root4(n)+root4(n+1))) , then S equals ___________.