Home
Class 12
MATHS
The value of ("lim")(nvecoo)sum(r=1)^(4n...

The value of `("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2)` is equal to `1/(35)` (b) `1/4` (c) `1/(10)` (d) `1/5`

A

`1/35`

B

`1/14`

C

`1/10`

D

`1/5`

Text Solution

Verified by Experts

`lim_(nto oo) sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^(2))`
`T_(r)=1/(sqrt(r/n n(3 sqrt(r/n)+4)^(2))`
`:. S=lim_(n to oo) 1/n sum_(1) ^(4n) 1/((3sqrt(r/n)+4)^(2)sqrt(r/n))=int_(0)^(4)(dx)/(sqrt(x)(3sqrt(x)+4)^(2))`
Put `3sqrt(x)+4=t`
or `3/2 1/(sqrt(x))dx=dt`
`:. S=2/3int_(4)^(10)(dt)/(t^(2))=2/3[-1/t]_(10)^(4)=1/10`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(nvecoo)(sumr=1nsqrt(r)sumr=1n1/(sqrt(r)))/(sumr=1n r)

Evaluate: ("lim")_(nvecoo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

The value of ("lim")_(xvecoo)[3sqrt((n+1)^2) -3sqrt((n-1)^2 ))] is_____

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

The value of lim_(n->oo)sum_(r=0)^(n) (sum_(t=0)^(r-1)1/(5^n)*"^n C_r * "^r C_t .(3^t)) is equal to

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is

The value of the limit ("lim")_(xvec0)(a^(sqrt(x))-a^(1 / sqrt(x)))/(a^(sqrt(x))+a^(1 / sqrt(x))),a >1,i s 4 (b) 2 (c) -1 (d) 0

The value of ("lim")_(xto2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

("lim")_(xvecoo)(2sqrt(x)+3sqrt(x)+4sqrt(x)+...+nsqrt(n))/(sqrt((2x-3))+(sqrt(2x-3))+....+(sqrt(2x-3)) i se q u al to 1 (b) oo (c) sqrt(2) (d) none of these