Home
Class 12
MATHS
For x >0,l e tf(x)=int1^x(logt)/(1+t)dtd...

For `x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot` Find the function `f(x)+f(1/x)` and find the value of `f(e)+f(1/e)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)f(1/x)dot

The function f(x) is defined in [0,1] . Find the domain of f(t a nx)dot

Find the range of f(x)=cos((log)_e{x})dot

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

f(x)=int_1^x(tan^(-1)(t))/t dt , x in R^+, then find the value of f(e^2)-f(1/(e^2))

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

If f(x)=(log)_e((x^2+e)/(x^2+1)) , then the range of f(x)

If int(x^2-x+1)/((x^2+1)^(3/2))e^x dx=e^xf(x)+c ,t h e n f(x) is an even function f(x) is a bounded function the range of f(x) is (0,1) f(x) has two points of extrema