Home
Class 12
MATHS
Given that matrix A[(x,3,2),(1,y,4),(2,2...

Given that matrix `A[(x,3,2),(1,y,4),(2,2,z)]`. If `xyz=60` and `8x+4y+3z=20`, then A(adj A) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

If direction ratios of the normal of the plane which contains the lines (x-2)/3=(y-4)/2=(z-1)/1 and (x-6)/3=(y+2)/2=(z-2)/1 are (a, 1,-26) , then a is equal to

The value of |(1,1,1),(2x,2y,2z),(3x,3y,3z)| is ____

If the system of linear equations x+ky+3z=0 3x+ky-2z=0 2x+4y-3z=0 has a non-zero solution (x,y,z) then (xz)/(y^2) is equal to

Given 3[(x,y),(z,w)]=[(x,6),(-1,2w)]+[(4,x+y),(z+w,3)] , find the values of x, y, z and w.

If 2x - 3y - 4z = 0 , then find 8 x^(3) - 27y^(3) - 64z^(3)

Given that x ,y ,z are positive real such that x y z=32. If the minimum value of x^2+4x y+4y^2+2z^2 is equal m , then the value of m//16 is.

Show that |(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3))|=xyz (x-y) (y-z) (z-x)

Value of [[x+y, z,z ],[x, y+z, x],[y, y, z+x]], where x ,y ,z are nonzero real number, is equal to x y z b. 2x y z c. 3x y z d. 4x y z