Home
Class 12
MATHS
A periodic function with period 1 is int...

A periodic function with period 1 is integrable over any finite interval. Also, for two real numbers a,b and two unequal non-zero positive integers m and n `int_a^(a+n) f(x)dx=int_b^(b+m) f(x)` calculate the value of `int_m^n f(x) dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a)^(b) f(x) dx =

Evaluate: inta^(m x)b^(n x)dx

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_2^(-1)f(x)dxdot

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

If int_a^b(f(x)-3x)dx=a^2-b^2 then the value of f(pi/6) is ___

Given a function f(x) such that It is integrable over every interval on the real line, and f(t+x)=f(x), for every x and a real tdot Then show that the integral int_a^(a+t)f(x)dx is independent of adot

Let a and b be two positive real numbers. Then the value of int_(a)^(b)(e^(x//a)-e^(b//x))/(x)dx is

Consider the integral I=int(xe^(x))/((1+x)^(2))dx What is the value of inte^(x)(f(x)+f'(x))dx ?

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If x and y are positive real numbers and m, n are any positive integers, then Prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt =1/4