Home
Class 12
MATHS
Suppose that F(x) is an anti-derivative...

Suppose that `F(x)` is an anti-derivative of `f(x)=(sinx)/x ,w h e r ex > 0.` Then `int_1^3(sin2x)/xdx` can be expressed as (a)`F(6)-F(2)` (b) `1/2(F(6)-f(2))` (c)`1/2(F(3)-f(1))` (d) `2(F(6))-F(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the anti derivative F of f defined by f (x) = 4x^(3) - 6 , where F (0) = 3

IF f(x) = ( x+2)/(3x-1) , then f(f(x)) is

If f(x)={(e^(cosx)sinx, |x|le2),(2, otherwise):} then int_-2^3f(x)dx= (A) 0 (B) 1 (C) 2 (D) 3

If f(x)=2x^(2)+3x-5 , then prove that f'(0)+3f'(-1)=0

Suppose f(x)=(d)/(dx)(e^(x)+2) . Find int(f(x)-sinx)dx .

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s 2f^(-1)(x)-5 (b) 1/(2f^(-1)(x)+5) 1/2f^(-1)(x)+5 (d) f^(-1)((x-5)/2)

Off(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)