Home
Class 12
MATHS
The value of the definite integral in...

The value of the definite integral `int_0^(pi/2)sqrt(tanx)dx` is `sqrt(2)pi` (b) `pi/(sqrt(2))` `2sqrt(2)pi` (d) `pi/(2sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the definite integrals int_(0)^(pi/2)cos^(2)xdx

Evaluate the definite integrals int_(0)^(pi/2)cos2xdx

The value of the definite integral int_0^(pi/2)(sin5x)/(sinx)dxi s 0 (b) pi/2 (c) pi (d) 2pi

The value of the integral int_0^1sqrt((1-x)/(1+x))dx is (a) pi/2+1 (b) pi/2-1 (c) -1 (d) 1

int_(0)^((pi)/(2))(dx)/(1+sqrt(tanx)) is :

Evaluate the definite integrals int_((pi)/(6))^((pi)/(3))(sinx+cosx)/(sqrt(sin2x))dx .

Evaluate the definite integral int_(0)^(pi)2("sin"^(2)(x)/(2)-"cos"^(2)(x)/(2))dx

The value of the definite integral int_0^(sqrt(1n(pi/2)))cos(e^(x^2))2 x e^(x^2) dx is (a)1 (b) 1+(sin1) (C) 1-(sin1) (d) (sin1)-1

Evaluate int_0^((pi)/(2))(dx)/(1+sqrt(tanx))