Home
Class 12
MATHS
A function f is defined by f(x)=1/(2^(r...

A function `f` is defined by `f(x)=1/(2^(r-1)),1/(2^r)ltxlt=1 (2^(r-1)),r="1,2,3` then the value of `int_0^1f(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

If the function f is defined by f(x)={(x+2," if" xgt1), (2" if" -1lexle1 ), (x-1 " if" -3ltxlt-1):} find the values of f(0)

If the function f is defined by f(x)={(x+2," if" xgt1), (2" if" -1lexle1 ), (x-1 " if" -3ltxlt-1):} find the values of f(3)

If the function f is defined by f(x)={(x+2," if" xgt1), (2" if" -1lexle1 ), (x-1 " if" -3ltxlt-1):} find the values of f(2)+f(-2)

If the function f is defined by f(x)={(x+2," if" xgt1), (2" if" -1lexle1 ), (x-1 " if" -3ltxlt-1):} find the values of f(-1.5)

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

The function f:R->[-1/2,1/2] defined as f(x)=x/(1+x^2) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)