Home
Class 12
MATHS
Column I, Column II (I-A)^n is if A i...

Column I, Column II `(I-A)^n` is if `A` is idempotent, p. `2^(n-1)(l-A)` `(I-A)^n` is if `A` is involuntary, q. `I-n A` `(I-A)^n` is if `A` is nilpotent of index 2, r. `A` If `A` is orthogonal, then `(A^T)^(-1)` , s. `I-A`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a nilpotent matrix of index 2, then for any positive integer n ,A(I+A)^n is equal to A^(-1) b. A c. A^n d. I_n

If Z is an idempotent matrix, then (I+Z)^n I+2^n Z b. I+(2^n-1)Z c. I-(2^n-1)Z d. none of these

P=n(n^(2)-1)(n^(2)-4)(n^(2)-9)…(n^(2)-100) is always divisible by , (n in I)

If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equal to O I b. 2I c. 6I d. I

If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equal to O I b. 2I c. 6I d. I

i^(n) + i^(n+1) + i^(n + 2) + i^(n + 3)

Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the for ngeq2. A^n is equal to 2^(n-1)A-(n-1)l b. 2^(n-1)A-I c. n A-(n-1)l d. n A-I

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n