Home
Class 12
MATHS
If f(x) is monotonic differentiable fun...

If `f(x)` is monotonic differentiable function on `[a , b]` , then `int_a^bf(x)dx+int_(f(a))^(f(b))f^(-1)(x)dx=` (a)`bf(a)-af(b)` (b) `bf(b)-af(a)` (c)`f(a)+f(b)` (d) cannot be found

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a)^(b) f(x) dx =

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

Given a real-valued function f which is monotonic and differentiable. Then int_(f(a))^(f(b))2x(b-f^(-1)(x))dx=

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Evaluate int_(0)^(a)(f(x))/(f(x)+f(a-x)) dx.

If f(x) is even then int_(-a)^(a)f(x)dx ….

Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot Then |int_a^bf(x)dx-(b-a)f(a)|lt= (a) ((b-a))/2 (b) ((b-a)^2)/2 (c) (b-a)^2 (d) none of these

If f(x)=f(a+x) then show that int_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx .