Home
Class 12
MATHS
L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dxa ...

`L e tJ=int_(-5)^(-4)(3-x^2)tan(3-x^2)dxa n dK=int_(-2)^(-1)(6-6x+x^2)` `tan(6x-x^2-6)dxdotT h e n(J+K)` equals _____

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(tan^(-1)x))/(1+x^(2))dx :

int_(0)^(prop) x^(6) e^(-(x)/(2))dx is :

For x in R and a continuous function f, let I_1=int_(s in^2t)^(1+cos^2t)xf{x(2-x)}dxa n dI_2= int_(sin^2t)^(1+cos^2)xf{x(2-x)}dxdotT h e n(I_1)/(I_2) is -1 (b) 1 (c) 2 (d) 3

int(6x+5)/(sqrt(3x^(2)+5x+1))dx :

Evaluate int_(0)^(3)(x^2-6x+5)dx

int (e^(x) (x^(2) tan^(-1) x + tan^(-1) x + 1))/( x^(2) + 1) dx is

int(e^(tan^(-1)x))/(1+x^(2))dx

Solve (2x-3)/(x-1)+1=(6x-x^2-6)/(x-1)dot

Evaluate: int((x-1)(x-2)(x-3))/((x-4)(x-5)(x-6))dx