Home
Class 12
MATHS
If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f...

If `f(x) =(e^x)/(1+e^x), I_1=int(f(-a))^(f(a)) xg(x(1-x)dx, and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx,` then the value of `(I_2)/(I_1)` is (a) `-1` (b) `-2` (c) `2` (d) `1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If I_1 = int_(-100)^(101) dx/((5+2x-2x^2)(1+e^(2-4x)) and I_2= int_(-100)^(101) dx/(5+2x-2x^2), then I_1/I_2 is (a) 2 (b) 1/2 (c) 1 (d) -1/2

"I f"I_1=int_(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I_2=int_(-100)^(101)(dx)/(5+2x-2x^2),t h e n(I_1)/(I_2)"i s" (a)2 (b) 1/2 (c) 1 (d) -1/2

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

Let f be a positive function. Let I_1=int_(1-k)^k xf([x(1-x)])dx , I_2=int_(1-k)^kf[x(1-x)]dx ,w h e r e2k-1> 0. T h e n(I_1)/(I_2)i s 2 (b) k (c) 1/2 (d) 1

The domain of f(x)i s(0,1)dot Then the domain of (f(e^x)+f(1n|x|) is (a) (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_2^(-1)f(x)dxdot

f(x)=int_1^x(tan^(-1)(t))/t dt , x in R^+, then find the value of f(e^2)-f(1/(e^2))

"If " int e^(x^(3)+x^(2)-1)(3x^(4)+2x^(3)+2x)dx=f(x)+C, " then the value of " f(1)xxf(-1) " is"-.