Home
Class 12
MATHS
If f(x)=(sinx)/xAAx in (0,pi], prove tha...

If `f(x)=(sinx)/xAAx in (0,pi],` prove that `pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that int_0^pixf(sinx)dx=pi/2int_0^pif(sinx)dxdot

int_(0)^(pi/2)e^(-x) sinx dx is

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then prove that int_0^2f(2-x)dx=2int_0^1f(x)dxdot

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Prove that int_(0)^((pi)/(2)) log ( tan x ) dx = 0

Evaluate int_(0)^(pi)(x)/(1+sinx) dx.

Prove that int_((-pi)/(3))^(pi/3)log[(2-sinx)/(2+sinx)]dx=0

Prove that int_(0)^(pi)(xsin^(3)x)/(1+cos^(2)x)dx=pi/2(pi-2)