Home
Class 12
MATHS
f,g, h , are continuous in [0, a],f(a-x)...

`f,g, h ,` are continuous in `[0, a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5.` Then prove that `int_0^af(x)g(x)h(x)dx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n dg(x)+g(a-x)=2, then show that int_0^af(x)g(x)dx=int_0^af(x)dxdot

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

Evaluate: int[f(x)g^(x)-f^(x)g(x)]dx

Let f(x) be a continuous function AAx in R , except at x=0, such that g(x)= int_x^a(f(t))/t dt , prove that int_0^af(x)dx=int_0^ag(x)dx

If f(x)=2x+3, g(x)=1-2x and h(x) =3x . Prove that fo(goh)=(fog)oh .

If f(x)=x^(2), g(x)=3x and h(x)=x-2 . Prove that (fog)oh=fo(goh) .

If f(x)=2x+3, g(x) = 1-2x and h(x)=3x . Prove that f o (g o h) = (f o g) o h

If f(x)=2x+3 , g(x)=1-2x and h(x)=3x. Prove that f o(g o h) = (f o g ) o h

Evaluate int[f(x)g^(n)(x)-f^(n)(x)g(x)]dx

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is