Home
Class 12
MATHS
If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)...

If `f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1,` then prove that `int_0^2f(2-x)dx=2int_0^1f(x)dxdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then find the value of f(7)dot

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

If f(x)=f(a+x) then show that int_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx .

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n dg(x)+g(a-x)=2, then show that int_0^af(x)g(x)dx=int_0^af(x)dxdot

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.

If f(x+y)=f(x)+f(y)-x y-1AAx , y in Ra n df(1)=1, then the number of solution of f(n)=n , n in N , is 0 (b) 1 (c) 2 (d) more than 2