Home
Class 12
MATHS
Let intx^(x+p)f(t)dt be independent of x...

Let `int_x^(x+p)f(t)dt` be independent of `xa n dI_1=int_0^pf(t)dt ,I_2=int_(10)^(p^n+10)f(z)dz` for some `p ,` where `n in Ndot` Then evaluate `(l_2)/(l_1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

f(x)=int_1^x(tan^(-1)(t))/t dt , x in R^+, then find the value of f(e^2)-f(1/(e^2))

If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2

If f(x)=x+int_0^1 t(x+t) f(t)dt, then find the value of the definite integral int_0^1 f(x)dx.

Let p_n=a^(P_(n-1))-1,AAn=2,3, ,a n dl e tP_1=a^x-1, where a in R^+dot Then evaluate ("lim")_(xvec0)(P_n)/x