Home
Class 12
MATHS
Let f(x) be a derivable function satisfy...

Let `f(x)` be a derivable function satisfying `f(x)=int_0^x e^tsin(x-t)dta n dg(x)=f^(x)-f(x)` Then the possible integers in the range of `g(x)` is_______

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R -(0,oo) be a real valued function satisfying int_0^x tf(x-t) dt =e^(2x)-1 then f(x) is

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f:(0,oo)vec(0,oo) be a differentiable function satisfying, x int_0^x (1-t)f(t)dt=int_0^x tf(t)dtx in R^+a n df(1)=1. Determine f(x)dot

A function f(x) satisfies f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt is

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

Let f be a real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6) Prove that int_x^(x+8)f(t)dt is constant function.

Let f(x) be a continuous and differentiable function such that f(x)=int_0^xsin(t^2-t+x)dt Then prove that f^('')(x)+f(x)=cosx^2+2xsinx^2

If f(x) is a polynomial function satisfying f(x)dotf(1/x)=f(x)+f(1/x) and f(4)=65 ,t h e nfin df(6)dot