Home
Class 12
MATHS
The value of int0^((3pi)/2)(|tan^(-1)tan...

The value of `int_0^((3pi)/2)(|tan^(-1)tanx|-|sin^(-1)sinx|)/(|tan^(-1)tanx|+|sin^(-1)sinx|)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is

The value of int_(0)^((pi)/(2)) (dx)/( 1+ tan x) is

inte^(tanx)(sinx-secx)dx is equal to

The value of sin(2(tan^(-1)0.75) is ………..

Evaluate int_0^((pi)/(2))(dx)/(1+sqrt(tanx))

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is

Evaluate: int_(-pi/2)^(2pi)sin^(-1)(sinx)dx

int(In(tanx))/(sinx cosx)dx " is equal to "