Home
Class 12
MATHS
The value of int1^e((tan^(-1)x)/x+(logx)...

The value of `int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s` `tane` (b) `tan^(-1)e` `tan^(-1)(1/e)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx is

int(e^(tan^(-1)x))/(1+x^(2))dx :

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2))dx is____.

int(e^(tan^(-1)x))/(1+x^(2))dx

Evaluate int_(1)^(e)(1)/(x(1+logx))dx

e ^(tan^(-1)x)((1 + x+ x^(2))/(1 + x^(2)))

Evaluate int"tan"^(-1)((2x)/(1-x^(2)))dx

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/(2)))dx is

The value of int_(0)^(4)[tan^(-1)((x)/(x^(2)+1))+tan^(-1)((x^(2)+1)/(x))]dx is

Evaluate int_(1)^(e)(1+logx)/(x)dx