Home
Class 12
MATHS
If int1^2e^(x^2)dx=a ,t h e ninte^(e^4)s...

If `int_1^2e^(x^2)dx=a ,t h e nint_e^(e^4)sqrt(1n x)dx` is equal to (a)`2e^4-2e-a` (b) `2e^4-e-a` (c)`2e^4-e-2a` (d) `e^4-e-a`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+e^(-x)) is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to

If int_0^1e^-(x^2)dx=a , then find the value of int_0^1x^2e^-(x^2)dx in terms of a .

int(e^x)/(e^(2x)+4)dx

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

Find int(e^(x))/(sqrt(4-e^(2x)))dx

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/(1+e^(tanx))dx is equal to (a) e+1 (b) 1-e (c) e-1 (d) none of these

int(e^(x)+1)/(e^(x))dx :

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to