Home
Class 12
MATHS
Let f be a real-valued function defined ...

Let `f` be a real-valued function defined on the inverval `(-1,1)` such that `e^(-x)f(x)=2+int_0^xsqrt(t^4+1)dt ,` for all, `x in (-1,1)a n dl e tf^(-1)` be the inverse function of `fdot` Then `(f^(-1))^'(2)` is equal to 1 (b) `1/3` (c) `1/2` (d) `1/e`

Promotional Banner

Similar Questions

Explore conceptually related problems

f is a real valued function from R to R such that f(x)+f(-x)=2 , then int_(1-x)^(1+X)f^(-1)(t)dt=

Let f:R -(0,oo) be a real valued function satisfying int_0^x tf(x-t) dt =e^(2x)-1 then f(x) is

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let agt1 be a real number and f(x)=log_(a)x^(2)" for "xgt 0. If f^(-1) is the inverse function fo f and b and c are real numbers then f^(-1)(b+c) is equal to

Let f be a non-negative function defined on the interval [0,1]dot If int_0^xsqrt(1-(f^(prime)(t))^2)dt=int_0^xf(t)dt ,0lt=xlt=1,a n df(0)=0,t h e n (A) f(1/2) 1/3 (B) f(1/2)>1/2a n df(1/3)>1/3 (C) f(1/2) 1/2a n df(1/3)<1/3

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Find the inverse of the function f: [-1,1] to [-1,1],f(x) =x^(2) xx sgn (x).

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

Let f:[0,2]->R be a function which is continuous on [0,2] and is differentiable on (0,2) with f(0)=1 L e t :F(x)=int_0^(x^2)f(sqrt(t))dtforx in [0,2]dotIfF^(prime)(x)=f^(prime)(x) . for all x in (0,2), then F(2) equals (a) e^2-1 (b) e^4-1 (c) e-1 (d) e^4