Home
Class 12
MATHS
Let f be a non-negative function define...

Let `f` be a non-negative function defined on the interval `[0,1]dot` If `int_0^xsqrt(1-(f^(prime)(t))^2)dt=int_0^xf(t)dt ,0lt=xlt=1,a n df(0)=0,t h e n` (A)`f(1/2)<1/2a n df(1/3)>1/3` (B)`f(1/2)>1/2a n df(1/3)>1/3` (C)`f(1/2)<1/2a n df(1/3)<1/3` (D)`f(1/2)>1/2a n df(1/3)<1/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a function defined on the interval [0,2pi] such that int_(0)^(x)(f^(')(t)-sin2t)dt=int_(x)^(0)f(t)tantdt and f(0)=1 . Then the maximum value of f(x) is…………………..

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f be a real-valued function defined on the inverval (-1,1) such that e^(-x)f(x)=2+int_0^xsqrt(t^4+1)dt , for all, x in (-1,1)a n dl e tf^(-1) be the inverse function of fdot Then (f^(-1))^'(2) is equal to 1 (b) 1/3 (c) 1/2 (d) 1/e

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

Let f:(0,oo)vec(0,oo) be a differentiable function satisfying, x int_0^x (1-t)f(t)dt=int_0^x tf(t)dtx in R^+a n df(1)=1. Determine f(x)dot

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)