Home
Class 12
MATHS
Consider the polynomial f(x)=a x^2+b x+c...

Consider the polynomial `f(x)=a x^2+b x+cdot` If `f(0),f(2)=2,` then the minimum value of `int_0^2|f^(prime)(x)dxi s___`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x)=f(a+x) then show that int_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx .

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

Consider the real function f(x ) = ( x+2)/( x-2) prove that f(x) f(-x) +f(0) =0

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|