Home
Class 12
MATHS
int0^1(tan^(-1)x)/x dx is equals to i...

`int_0^1(tan^(-1)x)/x dx` is equals to `int_0^(pi/2)(sinx)/x dx` (b) `int_0^(pi/2)x/(sinx)dx` `1/2int_0^(pi/2)(sinx)/x dx` (d) `1/2int_0^(pi/2)(""x)/(sinx)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(cosx)/(1+sinx)dx=

int_(0)^(pi/2)e^(-x) sinx dx is

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Show that int_0^pixf(sinx)dx=pi/2int_0^pif(sinx)dxdot

Evaluate : int_0^(pi/2) (sinx+cosx) dx

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

Evaluate int_(0)^(pi)(x)/(1+sinx) dx.

Evaluate: int_0^(pi/2)|sinx-cosx|dx

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .