Home
Class 12
MATHS
The value of int0^x[cost]dt ,x in [(4n+1...

The value of `int_0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ,` is equal to where [.] represents greatest integer function. `pi/2(2n-1)-2x` `pi/2(2n-1)+x` `pi/2(2n+1)-x` (d) `pi/2(2n+1)+x`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot] denotes the greatest integer function is equal to -npi (b) -(n+1)pi 2npi (d) -(2n+1)pi

The range of f(x)=[1+sinx]+[2+sin(x/2)]+[3+sin (x/3)]+....+[n+sin (x/n)]AAx in [0,pi] , where [.] denotes the greatest integer function, is,

The period of f(x)=[x]+[2x]+[3x]+[4x]+[n x]-(n(n+1))/2x , where n in N , is (where [dot] represents greatest integer function). (a) n (b) 1 (c) 1/n (d) none of these

Prove that int_(-pi/2)^(2pi)[cot^(-1)x]dx ,where [dot] denotes the greatest integer function.

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=-1 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1

int_0^x|sint|dt , where x in (2npi,(2n+1)pi) , ninN ,is equal to (A) 4n-cosx (B) 4n-sinx (C) 4 n+1-cosx (D) 4n-1-cosx

The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes the greatest integer function, is {pi/2,pi} (b) {pi} (c) {pi/2} (d) none of these

The value of int_0^pi (sin(1+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >= 0 pi/2 (b) 0 (c) pi (d) 2pi

If int_(0)^(pi//2)(cotx)/(cotx+"cosec "x)dx=m(pi+n) , them m * n is equal to

The value of int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x)) d x is equal to