Home
Class 12
MATHS
Ifx=intc^(sint)sin^(-1)z dz ,y=intk^(sqr...

`Ifx=int_c^(sint)sin^(-1)z dz ,y=int_k^(sqrt(t))(sinz^2)/zdz ,t h e n(dy)/(dx)i se q u a lto` `(tant)/(2t)` (b) `(tant)/(t^2)` (c) `tan t/(2t^2)` (d) `(t a tt^2)/(2t^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(log{sin((x^2)/3-1)}) , t h e n find (dy)/(dx)dot

If int_0^y cos t^2\ dt = int_0^(x^2)\ sint/t \ dt , then dy/dx is equal to

Ifx=int_0^y(dt)/(sqrt(1+9t^2))a n d(d^2y)/(dx^2)=a y ,t h e nfin da

IfI_n=int_0^1(1-x^5)^n dx ,t h e n(55)/7(I_(10))/(I_(11))i se q u a lto___

Ifint_(pi/3)^xsqrt((3-sin^2t))dt+int_0^ycostdt=0,t h e ne v a l u a t e(dy)/(dx)

If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2

If int_0^ycost^2dt=int_0^(x^2)(sint)/t dx ,t h ep rov et h a t(dy)/(dx)=(2sinx^2)/(xcosy^2)

x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)) " then " (dy)/(dx) is

If x=t^2,y=t^3,t h e n(d^2y)/(dx^2)= (a) 3/2 (b) 3/((4t)) (c) 3/(2(t)) (d) (3t)/2

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then