Home
Class 12
MATHS
Let f(x)=int2^x (dt)/sqrt(1+t^4) and g ...

Let `f(x)=int_2^x (dt)/sqrt(1+t^4) and g` be the inverse of `f`. Then, the value of `g'(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_0^x(dt)/(sqrt(1+t^3))a n dg(x) be the inverse of f(x) . Then the value of 4(g^(primeprime)(x))/((g(x))^2)i s____

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(x)=x^(3)+3x+4 and g is the inverse function of f(x), then the value of (d)/(dx)((g(x))/(g(g(x)))) at x = 4 equals

Let f be continuous and the function g is defined as g(x)=int_0^x(t^2int_0^tf(u)du)dt where f(1) = 3 . then the value of g' (1) +g''(1) is

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

f(x)=x^x , x in (0,oo) and let g(x) be inverse of f(x) , then g(x)' must be

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)

Let f(x)=x^(3)+x+1 and let g(x) be its inverse function then equation of the tangent to y=g(x) at x = 3 is

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)