Home
Class 12
MATHS
STATEMENT 1: int0^(pi/4)log(1+t a ntheta...

STATEMENT 1: `int_0^(pi/4)log(1+t a ntheta)dtheta=pi/8log2.` STATEMENT 2: `int_0^(pi/2)logsin"thetadtheta"=-pilog2.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(pi/4)log(1+tanx)dx=(pi)/(8) log2.

Evaluate: int_0^(pi/2)[cost]dt

Evaluate: int_(-pi)^(3pi)log(s e ctheta-t a ntheta)dtheta

Prove that int_(0)^((pi)/(4))log(1+tanx)dx=(pi)/(8)log2

Show that int_0^(pi/2)sqrt((sin2theta))sinthetadtheta=pi/4

Evaluate: int_0^(pi/2)xcotx dx

If int_0^(pi/2)logsinthetadtheta=k , then find the value of int_pi^(pi/2)(theta/(s intheta))^2dtheta in terms of k

If int_0^(pi/2)logsinthetad(theta)=k , then find the value of int_0^(pi/2)(theta/(sintheta))^2d(theta) in terms of k

int_(0)^((pi)/(2)) log (cotx)dx is :