Home
Class 12
MATHS
For a in R (the set of all real number...

For `a in R` (the set of all real numbers), `a!=-1),` `(lim)_(n->oo)((1^a+2^a++n^a)/((n+1)^(a-1)[(n a+1)+(n a+2)+......(n a+n)])=1/(60.)` Then `a=` (a)`5` (b) 7 (c) `(-15)/2` (d) `(-17)/2`

A

5

B

7

C

`(-15)/2`

D

`(-17)/2`

Text Solution

Verified by Experts

Given limit `=(lim_(n to oo) 1/n sum_(r=1)^(n)(r/n)^(a))/(lim_(n to oo) (1+1/n)^(a-1)lim_(n to oo) 1/n sum_(r=1)^(n)(a+r/n))=(int_(0)^(1)x^(a)dx)/(int_(0)^(1)(a+x)dx)`
`=2/((2a+1)(a+1))=2/120`
`:.a=7` or `-17/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

Evaluate: lim_(n->oo)[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

lim_(nto oo)((1^(2))/(1-n^(3))+(2^(2))/(1-n^(3))+ . . . .+(n^(2))/(1-n^(3)))=

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is

("lim")_(xtooo)1/(1+nsin^2n x)is equal (a)-1 (b) 0 (c) 1 (d) oo

lim_(n to oo)((1)/(n^2)+(2)/(n^2)+(3)/(n^2)+"………."+(n)/(n^2)) is

lim_(xto oo)((1)/(1-n^(2))+(2)/(1-n^(2))+ . . .+(n)/(1-n^(2))) is