Home
Class 12
MATHS
Prove that int0^1tan^(-1)(1/(1-x+x^2))d...

Prove that `int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dxdot` Hence or otherwise, evaluate the integral `int_0^1tan^(-1)(1-x+x^2)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

evaluate the integrals int_(0)^(1)x(1-x)dx

int(e^(tan^(-1)x))/(1+x^(2))dx

Evaluate the Integral: inte^(x)(tan^(-1)x+(1)/(1+x^(2)))dx .

Evaluate: int_(0)^1tan^(-1)x/(1+x^2) dx

int(e^(tan^(-1)x))/(1+x^(2))dx :

Evaluate int"tan"^(-1)((2x)/(1-x^(2)))dx

Evaluate int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

Prove that int_(-1)x|x|dx=0

Evaluate int_(0)^(1)(x^2/(1+x^2))dx

Evaluate the definite integrals int_(0)^(1)xe^(x^(2))dx