Home
Class 12
MATHS
Let f be a real-valued differentiable...

Let `f` be a real-valued differentiable function on `R` (the set of all real numbers) such that `f(1)=1.` If the `y-in t e r c e p t` of the tangent at any point `P(x , y)` on the curve `y=f(x)` is equal to the cube of the abscissa of `P ,` then the value of `f(-3)` is equal to________

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be real valued and differentiable function on R such that f(x+y)=(f(x)+f(y))/(1-f(x)dotf(y)) f(0) is equals a. 1 b. 0 c. -1 d. none of these

A curve y=f(x) passes through point P(1,1) . The normal to the curve at P is a (y-1)+(x-1)=0 . If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, then the equation of the curve is

Let f be a differentiable function such that f(1) = 2 and f'(x) = f (x) for all x in R . If h(x)=f(f(x)), then h'(1) is equal to

If a function f satisfies f (f(x))=x+1 for all real values of x and if f(0) = 1/2 then f(1) is equal to

Let f(x) be real valued and differentiable function on R such that f(x+y)=(f(x)+f(y))/(1-f(x)dotf(y)) f(x) is Odd function Even function Odd and even function simultaneously Neither even nor odd

Let f(x)=x/(1+x) and let g(x)=(rx)/(1-x) , Let S be the set off all real numbers r such that f(g(x))=g(f(x)) for infinitely many real number x. The number of elements in set S is

Let g(x)=f(x)sinx ,w h e r ef(x) is a twice differentiable function on (-oo,oo) such that f(-pi)=1. The value of |g^n (-pi)| equals __________

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is

Let R be the set of real numbers. Define the real function f: R to R by f(x)=x+10 and sketch the graph of this function.

Let f be a function satisfying of xdot Then f(x y)=(f(x))/y for all positive real numbers xa n dydot If f(30)=20 , then find the value of f(40)dot