Home
Class 12
MATHS
Prove that (secθ−tanθ)^2 = (1-sinθ)/(1+...

Prove that `(secθ−tanθ)^2 = (1-sinθ)/(1+sinθ)` ​

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan2A =(2tanA)/(1-tan^2 A)

Prove that cos2A=(1-tan^2 A)/(1+tan^2 A)

Prove that: (1−sinx)/(1+sinx) =(secx−tanx)^2

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tantheta))^2

Prove that (sin A)/(1 + cos A) + (sin A)/(1 - cos A) = 2 cosec A.

Prove that sin2A=(2tanA)/(1+tan^2 A)

If sin(θ+α)=cos(θ+α), then Prove that tanθ = 1+tanα / 1−tanα ​

Prove that cot^(2)A ((secA-1)//(1+sinA))+sec^(2)A((sinA-1)/(1+secA))=0

Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))

Prove that (1+ tan 1^@ ) (1+ tan 2^@ )...(1+ tan 45º )= 2^23