Home
Class 12
MATHS
Which of the following equation(s) is/ar...

Which of the following equation(s) is/are linear? `(a) dy/dx+y/x=lnx (b) y(dy/dx)+4x=0 (c)(2x+y^3)(dy/dx)=3y (d)N.O.T.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : (x+2y^3)dy/dx=y

Solve the following differential equations: (dy)/(dx)=1+x+y+x y (ii) y-x(dy)/(dx)=a(y^2+(dy)/(dx))

In which of the following differential equation degree is not defined? (a) (d^2y)/(dx^2)+3(dy/dx)^2=xlog((d^2y)/(dx^2)) (b) ((d^2y)/(dx^2))^2+(dy/dx)^2=xsin((d^2y)/(dx^2)) (c) x=sin((dy/dx)-2y),|x|<1 (d) x-2y=log(dy/dx)

(dy)/(dx) = e^(2x-y) + x^(3) e^(-y)

x(dy)/(dx) - y + x sin ((y)/(x)) = 0

Find the order and degree ( if defined ) of each of the following differential equations. i . (dy)/(dx)-cosx=0 ii xy(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-y(dy)/(dx)=0

Find the order and degree, if defined, of each of the following differential equations: (i) (dy)/(dx) - cos x = 0 (ii) xy (d^(2)y)/(dx^(2)) + x((dy)/(dx))^(2) - y (dy)/(dx) = 0 (iii) y''' + y^(2) + e^(y)' = 0

(dy)/(dx) + 3y = e^(-2x)

For each of the differential equations given in (dy)/(dx)+3y=e^(-x)

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^((d^(3)y)/(dx^(3)))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)((dy)/(dx))=x+y , iv) log_(e)((dy)/(dx))=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0