Home
Class 11
MATHS
The points A(0,0),B(cosalpha,sinalpha) ...

The points `A(0,0),B(cosalpha,sinalpha)` and `C(cosbeta,sinbeta)` are the vertices of a right-angled triangle if (a)`sin((alpha-beta)/2)=1/(sqrt(2))` (b) `cos((alpha-beta)/2)=-1/(sqrt(2))` (c)`cos((alpha-beta)/2)=1/(sqrt(2))` (d) `sin((alpha-beta)/2)=-1/(sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

P(cosalpha,sinalpha), Q(cosbeta, sinbeta) , R(cosgamma, singamma) are vertices of triangle whose orthocenter is (0, 0) then the value of cos(alpha-beta) + cos(beta-gamma) + cos(gamma-alpha) is

If tanalpha=1/7,sin beta=1/(sqrt(10)), prove that alpha+2beta=pi/4

Prove that (cos alpha+cos beta)^(2)+(sin alpha -sin beta)^(2)=4 cos^(2) ((alpha+beta)/(2))

If alpha=tan^(-1)((sqrt(3)x)/(2y-x)),beta=tan^(-1)((2x-y)/(sqrt(3y)))" then "alpha-beta=

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If tan alpha and tan beta are the roots of x^2 + ax +b =0 then (sin(alpha+beta))/(sin alpha sin beta) is equal to

If sinalpha+sinbeta=a and cosalpha+cosbeta=b , prove that tan((alpha-beta)/2)=+-sqrt((4-a^2-b^2)/(a^2+b^2)) .

If a=cos 2alpha+i sin 2alpha, b =cos 2beta+i sin 2beta and c = cos 2gamma+i sin 2gamma . Prove that. (i) sqrt(abc)+(1)/(sqrt(abc))=2cos(alpha+beta+gamma) (ii) ((a^(2)b^(2)+c^(2)))/(abc)=2cos2(alpha+beta-gamma)