Home
Class 11
MATHS
If p and q are the lengths of perpendicu...

If p and q are the lengths of perpendiculars from the origin to the lines `x cos theta - y sin theta = k cos 2 theta " and " x sec theta + y cosec theta = k `, respectively, prove that `p^(2) + 4q^(2) = k^(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If sec theta + tan theta = k, cos theta =

If x sin ^3 theta +y cos^3 theta = sin theta cos theta and x sin theta =y cos theta then x^2 +y^2 is

If xsin^(3) theta +y cos^(3) theta=sin theta cos theta and x sin theta =y cos theta , then prove that x^(2)+y^(2)=1 .

Prove the following: cot^2 theta - tan^2 theta = cosec^2 theta - sec^2 theta

Prove the following: (sin theta - cos theta + 1 )/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)

If "cosec" theta - sin theta = a^(3) and sec theta - cos theta = b^(3) , then prove that a^(2)b^(2)(a^(2) + b^(2))= 1.

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Prove that sin^(4) theta + cos^(4) theta = 1 - 2 sin^2 theta cos^(2) theta