Home
Class 11
MATHS
theta1 and theta2 are the inclination of...

`theta_1` and `theta_2` are the inclination of lines `L_1a n dL_2` with the x-axis. If `L_1a n dL_2` pass through `P(x_1,y_1)` , then the equation of one of the angle bisector of these lines is (a) `(x-x_1)/(cos((theta_1+theta_2)/2))=(y-y_1)/(sin((theta_1+theta_2)/2))` (b)`(x-x_1)/(-sin((theta_1+theta_2)/2))=(y-y_1)/(cos((theta_1+theta_2)/2))` (c)`(x-x_1)/(sin((theta_1+theta_2)/2))=(y-y_1)/(cos((theta_1+theta_2)/2))` (d)`(x-x_1)/(-sin((theta_1+theta_2)/2))=(y-y_1)/(cos((theta_1+theta_2)/2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (sin2theta)/(1-cos2theta)=cottheta

(sintheta+sin2theta)/(1+costheta+cos2theta)

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Find |A| if A= [(0,cos theta_(1),sin theta_(1)),(cos theta_(1),0,sin theta_(2)),(sin theta_(1),-sin theta_(2),0)]

If costheta_1 =2costheta_2, then tan((theta_1-theta_2)/2)tan((theta_1+theta_2)/2) is equal to (a) 1/3 (b) -1/3 (c) 1 (d) -1

Prove that: (sin2theta)/(1+cos2theta)=tantheta

(1)/(sin^(2)theta)-(cos^(2)theta)/(sin^(2) theta) =___.

Prove that ((1+sin theta- cos theta)/(1+sin theta+costheta))^2=(1-cos theta)/(1+cos theta)

Prove : (cos^2theta)/(1-tan theta) + (sin^3theta)/(sintheta - cos theta) = 1 + sin theta cos theta