Home
Class 11
MATHS
In a triangle A B C ,A=(alpha,beta)B=(2,...

In a triangle `A B C ,A=(alpha,beta)B=(2,3),a n dC=(1,3)dot` Point `A` lies on line `y=2x+3,` where `alpha in Idot` The area of ` DeltaA B C ,` , is such that `[Delta]=5` . The possible coordinates of `A` are (where [.] represents greatest integer function). (a)`(2,3)` (b) `(5,13)` (c)`(-5,-7)` (d) `(-3,-5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a A B C ,A-=(alpha,beta),B-=(1,2),C-=(2,3), point A lies on the line y=2x+3, where alpha,beta are integers, and the area of the triangle is S such that [S]=2 where [ . ] denotes the greatest integer function. Then the possible coordinates of A can be (a) (-7,-11) (b) (-6,-9) (c) (2,7) (d) (3,9)

The greatest value of f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo], is (where [.] represents the greatest integer function). -1 (b) 1 (c) 0 (d) none of these

The area of triangle A B C is 20c m^2dot The coordinates of vertex A are -5,0) and those of B are (3,0)dot The vertex C lies on the line x-y=2 . The coordinates of C are (5,3) (b) (-3,-5) (-5,-7) (d) (7,5)

Find the value of x in [1,3] where the function [x^2+1]([dot] represents the greatest integer function) is discontinuous.

The period of f(x)=[x]+[2x]+[3x]+[4x]+[n x]-(n(n+1))/2x , where n in N , is (where [dot] represents greatest integer function). (a) n (b) 1 (c) 1/n (d) none of these

The period of the function f(x)=(6x+7)+cospix-6x , where [dot] denotes the greatest integer function is: 3 (b) 2 pi (c) 2 (d) none of these

If ("lim")_(xto1^-)(2-x+a[x-1]+b[1+x]) exists, then aa n db can take the values of (where [.] denotes the greatest integer function). (a) a=1/3,b=1 (b) a=1, b=-1 (c) a=9, b=-9 (d) a=2, b=2/3

A point on the ellipse x^2+3y^2=37 where the normal is parallel to the line 6x-5y=2 is (5,-2) (b) (5, 2) (c) (-5,2) (d) (-5,-2)

In A B C ,A(z_1),B(z_2),a n dC(z_3) are inscribed in the circle |z|=5. If H(z_n) be the orthocenrter of triangle A B C , then find z_ndot

A B C is an isosceles triangle. If the coordinates of the base are B(1,3) and C(-2,7) , the coordinates of vertex A can be (a) (1,6) (b) (-1/2,5) (c) (5/6,6) (d) none of these