Home
Class 12
MATHS
Let vec r1, vec r2, vec r3, , vec rn b...

Let ` vec r_1, vec r_2, vec r_3, , vec r_n` be the position vectors of points `P_1,P_2, P_3 ,P_n` relative to the origin `Odot` If the vector equation `a_1 vec r_1+a_2 vec r_2++a_n vec r_n=0` hold, then a similar equation will also hold w.r.t. to any other origin provided a. `a_1+a_2+dot+a_n=n` b. `a_1+a_2+dot+a_n=1` c. `a_1+a_2+dot+a_n=0` d. `a_1=a_2=a_3dot+a_n=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec r_1, vec r_2, vec r_3 are the position vectors of the collinear points and scalar p a n d q exist such that vec r_3=p vec r_1+q vec r_2, then show that p+q=1.

Find the number of all three elements subsets of the set {a_1, a_2, a_3, a_n} which contain a_3dot

Given three non-zero, non-coplanar vectors vec a , vec b ,and vec c . vec r_1=p vec a+q vec b+ vec ca n d vec r_2= vec a+p vec b+q vec c dot If the vectors vec r_1+2 vec r_2 and 2 vec r_1+ vec r_2 are collinear, then (P ,q) is a. (0,0) b. (1,-1) c. (-1,1) d. (1,1)

Let A_r ,r=1,2,3, , be the points on the number line such that O A_1,O A_2,O A_3dot are in G P , where O is the origin, and the common ratio of the G P be a positive proper fraction. Let M , be the middle point of the line segment A_r A_(r+1.) Then the value of sum_(r=1)^ooO M_r is equal to

Write the first three terms of the sequence defined by a_1 2,a_(n+1)=(2a_n+3)/(a_n+2) .

Let vectors vec a , vec b , vec c ,a n d vec d be such that ( vec axx vec b)xx( vec cxx vec d)=0. Let P_1a n dP_2 be planes determined by the pair of vectors vec a , vec b ,a n d vec c , vec d , respectively. Then the angle between P_1a n dP_2 is a. 0 b. pi//4 c. pi//3 d. pi//2

Find the first five terms of the following sequence . a_1 = 1 , a_2 = 1 , a_n = (a_(n-1))/(a_(n-2) + 3) , n ge 3 , n in N

If a_1, a_2, a_3(a_1>0) are three successive terms of a G.P. with common ratio r , for which a_3>4a_2-3a_1 holds is given by

If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is (a_1-a_2)x+(b_1-b_2)y+c=0 , then the value of c is

Find the first 6 terms of the sequence given by a_1=1, a_n=a_(n-1)+2 , n ge 2